Doctorado en ciencias físicas
URI permanente para esta colección
Navegar
Examinando Doctorado en ciencias físicas por Autor "Granda Velásquez, Luis Norberto"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Cosmología de tiempo tardío para un campo escalar con acoplamientos cinético y de Gauss-Bonnet(Universidad del Valle, 2016) Loaiza Acuña, Edwin; Granda Velásquez, Luis NorbertoEn esta tesis se estudian las soluciones de tiempo tardío para un modelo de campo escalar con acoplamientos cinético a la curvatura y del campo escalar al invariante de Gauss-Bonnet, con el fin explicar el fenómeno de la expansión acelerada del Universo. Inicialmente se hallan varias soluciones cosmológicas exactas que muestran las fases de desaceleración, aceleración e incluso la fase fantasma. Estas fases son necesarias para la explicación satisfactoria de la inflación temprana, así como la fase actualmente observada de la aceleración (super-aceleración) en el universo de tardío. Dichas soluciones son posibles dadas las restricciones que se impone a los acoples de Gauss- Bonnet y cinético no-mínimo, basados en los límites asintóticos de las ecuaciones de Friedmann generalizadas. Se estudia un escenario quitom con y sin singularidades Big RIP. Una elección específica del acople de Gauss-Bonnet, donde el cuadrado del parámetro de Hubble proporcional al término cinético, permite la reconstrucción del modelo para una evolución cosmológica adecuada. Para una nueva solución hallada, se pueden describir tres fases de expansión del universo que van desde ley de potencias, que describe un universo dominado por materia, hasta expansión tipo phantom con super aceleración.Publicación Acceso abierto Estudio de la energía oscura en el marco de la gravitación modificada y el principio holográfico(Universidad del Valle, 2023) Rojas Chacón, Germán Darío; Granda Velásquez, Luis NorbertoSe plantea el análisis de diversos escenarios que podrían acercarnos al entendimiento de la energía oscura en el universo. Inicialmente se estudia el comportamiento general de modelos de gravedad modificada tipo f(R) en el marco del principio holográfico analizando las ecuaciones de campo asociadas y la dinámica cosmológica a partir de un sistema dinámico. Seguidamente, los resultados obtenidos se aplican al modelo f(R) de Hu-Sawicki, y se propone una expansión analítica del modelo alrededor de ΛCDM para posteriores análisis perturbativos. Finalmente se sugiere un modelo exponencial f(R) para el cual se determinan las condiciones básicas de viabilidad, así como aquellas necesarias para cumplir los requerimientos de Sistema Solar, y se analiza el sistema dinámico asociado. Igualmente se efectúa una aproximación analítica de la tasa de Hubble del modelo alrededor de ΛCDM a partir de la cual se estudia la evolución de los distintos parámetros cosmológicos, y se calcula la tasa e índice de crecimiento de perturbaciones de materia. Haciendo uso de la aproximación analítica hallada para el parámetro de Hubble se calcula el espectro de potencias de materia por medio del código EFCLASS. Se concluye que las alternativas presentadas pueden describir la dinámica de la energía oscura en el universo desde una perspectiva geométrica en el marco holográfico y a su vez explicar la evolución cosmológica de los diferentes sectores de energía. Adicionalmente, el modelo f(R) propuesto puede explicar la evolución de las perturbaciones de materia manteniendo a su vez una diferencia con el modelo cosmológico estándar, la cual podría verificarse en observaciones futuras a bajo redshift.Publicación Acceso abierto Inflación y energía oscura en un modelo escalar-tensorial con acoplamientos cinético, no mínimo y de Gauss-Bonnet(Universidad del Valle, 2020) Jiménez Torres, Diego Fernando; Granda Velásquez, Luis NorbertoLos datos observacionales más recientes ponen de manifiesto la existencia de dos fases de expansión acelerada del universo, las cuales son asociadas a la inflación cósmica y a la energía oscura. A pesar de los esfuerzos teóricos por explicar la expansión acelerada, su naturaleza exacta aún sigue siendo un misterio que desafía a cosmólogos y físicos en general. Una línea de trabajo que ha buscado resolver este problema está basado en las teorías de campo escalar-tensorial, las cuales permiten la descripción de fases de expansión acelerada y, por tanto, constituyen una alternativa promisoria para el estudio del universo temprano y tardío. En este trabajo se estudian soluciones de inflación y energía oscura para un modelo de campo escalar con acoplamientos cinético, no mínimo (NMC) y de Gauss-Bonnet (GB). Las ecuaciones de campo de dicho modelo se calculan bajo la hipótesis de un universo isótropo, homogéneo y espacialmente plano. Con estas ecuaciones se desarrolla un mecanismo de reconstrucción que permite obtener el potencial y los acoplamientos para cualquier escenario cosmológico. En particular se estudia el modelo en ausencia de potencial, donde se obtienen soluciones de tiempo tardío que pueden ser ajustadas apropiadamente para describir escenarios con fase de quintaesencia y phantom. Adicionalmente, se obtiene el sistema autónomo y se analiza las propiedades de estabilidad de los puntos críticos correspondientes a comportamientos del universo tanto en épocas tempranas como tardías. En la última parte se presenta el formalismo de perturbaciones cosmológicas utilizando la relación de este modelo con las teorías más generales de segundo orden conocidas como Galileos Generalizados, y se estudia el papel de los acoplamientos en el espectro de potencias de perturbaciones escalar y tensorial. Además, se introduce el formalismo de multiplicadores de Lagrange en el contexto de gravedad modificada y se obtienen soluciones inacionarias viables. La compatibilidad con los datos observacionales provenientes diferentes fuentes (Planck y BICEP2/Keck-Array data) es obtenida en varios rangos de parámetros libres del modelo.Publicación Acceso abierto Principio holográfico y su aplicación en modelos de campos escalares de energía oscura(Universidad del Valle, 2009) Oliveros Garcia, Alexander; Granda Velásquez, Luis NorbertoEn el presente trabajo, se estudia el problema de la energía oscura del universo cuya existencia ha sido conjeturada a partir de una amplia evidencia observacional. Este problema hasta ahora no se ha podido resolver dentro del contexto de la cosmología estándar. Uno de los acercamientos al problema de la energía oscura lo constituye el principio holográfico, el cual se considera como un principio fundamental de una futura teoría de la gravitación cuántica. De este modo, proponemos en el contexto del principio holográfico un nuevo corte infrarrojo para la densidad de energía oscura holográfica, la cual además del término cuadrático usual en el parámetro de Hubble (H), también depende de la derivada en el tiempo de H. Con esta propuesta hemos evitado el problema de la causalidad que surge al considerar como corte infrarrojo el horizonte de eventos y hemos evitado también el problema de la coincidencia en cosmología.