• Español
  • English
  • Iniciar sesión
    o
    ¿Nuevo Usuario? Registrarse¿Has olvidado tu contraseña?
Logotipo del repositorioBiblioteca Digital
  • Inicio
  • Comunidades
  • Navegar
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Bourbaki, Nicolas"

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    La construcción de los números reales por Fred Richman y sus aportes para la compresión de los números reales en el contexto de formación de profesores
    (2014-04-24) Jaramillo Magaña, Iván Darío; Sánchez Villafañe, Fabián
    En este trabajo de grado se presentarán los aspectos fundamentales a los que recurrió Fred Richman para la construcción de los números reales (en un artículo publicado en la revista Mathematical Logic Quarterly en el 2008), se esbozará de manera general el camino que realiza Bourbaki en su propuesta estructuralista de la construcción de los números reales. Se reconstruirá la moderna construcción de los números reales realizada por el matemático Fred Richman, el cual sigue el camino de la lógica intuicionista de Brouwer y Heyting, como también, se evidenciará los aportes de Bourbaki en dicha construcción. Al presentar esta construcción, pretendemos dar a los profesores, nuevas perspectivas, no solo para la comprensión de R sino para que tengan herramientas que les permita desarrollar en sus estudiantes un pensamiento matemático
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Los números reales por Bourbaki y por Choquet: un estudio comparativo de las construcciones con fines educativos [recurso electrónico]
    (2012) Sánchez Valencia, Danny Javier
    En este trabajo se estudian las construcciones de los números reales realizadas por Bourbaki en los Élément de Mathématique y por Gustave Choquet en su Cours de Calcul Differentiel et Integral ofrecido en la Sobornne en 1955. Como es sabido en las construcciones más conocidas de R, se parte de Q como cuerpo ordenado y se completa con el axioma de continuidad, para llenar las ¿lagunas¿ algebraicas y topológicas. Bourbaki y Choquet escogen otro camino. Ambos parten de Q como grupo aditivo totalmente ordenado, de manera inmediata introducen una topología sobre Q compatible con la estructura de grupo, posteriormente completan el grupo topológico y finalmente hacen la extensión algebraica de grupo a cuerpo. En estas construcciones se realza precisamente aquello que se esconde en las exposiciones axiomáticas más frecuentes: el ingreso de la topología. Una de las conclusiones más interesantes del trabajo es la recomendación de considerar el estudio de estas dos construcciones en los cursos de matemática y Análisis de las carreras en las que se forman docentes de matemáticas. La construcción de Choquet sugiere estudiar en los primeros semestres de escolaridad por considerarse más intuitiva y por usar conceptos de la teoría de conjuntos y del álgebra, los cuales resultan más familiares a los estudiantes en esta etapa de su formación. La construcción de Bourbaki, o almenos un esbozo de su construcción, se recomienda en los cursos más avanzados de la carrera, por su alto grado de abstracción y generalidad, y por los requisitos conceptuales que requiere en la relación con las estructuras topológicas y uniformes, tales como filtros y filtros de Cauchy
Universidad del Valle
Universidad del Valle
  • Cali - Colombia
  • © 1994 - 2023
Dirección:
  • Ciudad Universitaria Meléndez
  • Calle 13 # 100-00
  •  
  • Sede San Fernando
  • Calle 4B N° 36-00
PBX:
  • +57 2 3212100
Línea gratuita PQRS
  • 018000 220021
  •  
Apartado Aéreo
  • 25360
Redes Sociales:
La Universidad
  • consejo-superior

    Consejo Superior
  • consejo-academico

    Consejo Académico
  • rectoria

    Rectoría
  • Nuestros Símbolos
  • acerca-de-univalle

    Acerca de Univalle
  • dependencias

    Dependencias
  • Museos

    Museos y Colecciones
  • Fotos de la Universidad
  • Mapa del Campus
  • tour-por-la-universidad

    Tour por la Universidad
  • daca

    Normatividad
  • horarios-de-atencion

    Horarios de atención
  • Portal de niños
  • Política de Tratamiento de
    la Información Personal
  • Accesibilidad digital
Estudia en Univalle
  • pregrado

    Pregrado
  • Postgrado
  • cursos-y-talleres

    Educación contínua
Sedes Regionales
  • Tuluá
  • Buga
  • univallecaicedonia

    Caicedonia
  • Cartago
  • Norte del Cauca
  • Pacífico
  • Palmira
  • Yumbo
  • zarzal

    Zarzal
  • Regionalización
Investigación
  • Acerca de la Vicerrectoría de investigaciones
  • Institutos, Centros y Grupos
  • Convocatorias
  • Universidad - Empresa (OTRI)
  • Dirección de Relaciones Internacionales
  • Programa Editorial
Internacionalización
  • Convocatorias

    Convocatorias
  • Estudia en Univalle

    Estudia en Univalle
  • Estudia

    Estudia en el exterior
  • Convenios

    Convenios Internacionales
  • Investiga

    Investiga en Univalle
  • Solicitudes

    Solicitudes / Trámites
  • About

    About Univalle
  • Contactos

    Contactos
Publicaciones
  • Libros
  • Periódico campus

2024 Universidad del Valle - Vigilada MinEducación

Sistema DSPACE 7 - Metabiblioteca | logo