Teorema de Noether y sus aplicaciones, desde un punto de vista geométrico
Portada
Citas bibliográficas
Código QR
Autores
Director
Autor corporativo
Recolector de datos
Otros/Desconocido
Director audiovisual
Editor/Compilador
Editores
Tipo de Material
Fecha
Cita bibliográfica
Título de serie/ reporte/ volumen/ colección
Resumen
El objetivo principal de este trabajo fue el de elaborar una demostración, con todos los detalles y completamente rigurosa, del teorema que establece que el movimiento de un cuerpo rígido con un punto fijo, en ausencia de fuerza externas, tiene 4 primeras integrales, es decir, se tienen 4 leyes de conservación. Nuestro punto de partida fue la explicación de este resultado y la presentación de mecánica clásica dada en el libro de Arnold [1]. Con este objetivo en mente, empezamos nuestro trabajo dando definiciones, a nuestro parecer un poco diferentes de las habituales, de un sistema físico y de un espacio de configuración. Estas nos permiten definir de una manera natural un lagrangiano en el espacio de configuración de un sistema físico, conociendo el lagrangiano para una partícula y un grupo de difeomorfismos en el espacio de configuración; los cuales reflejan las simetrías del sistema, En el apéndice, damos una demostración, a nuestro parecer un poco diferente de la habitual, de que la ́única superficie compacta y orientable que admite un campo vectorial tangente que no se anula, es el toro.