• Español
  • English
  • Iniciar sesión
    o
    ¿Nuevo Usuario? Registrarse¿Has olvidado tu contraseña?
Logotipo del repositorioBiblioteca Digital
  • Inicio
  • Comunidades
  • Navegar
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Narváez, Diana Ximena"

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Funciones multivaluadas.
    (2012-10-04) Narváez, Diana Ximena; Restrepo Sierra, Guillermo
    Una función multivaluada de un conjunto X en un conjunto Y es una relación f [c cubrayada] X×Y . Denotaremos por f (x) al conjunto de los y [que pertenece a] Y tales que (x, y) [pertenece a] f. Una función monovaluada de un conjunto X en un conjunto Y es una relación f [c cubrayada] X×Y tal que (x,y)[pertenece a] f y (x, y prima)[pertenece a] f implica y = (y prima). Si f es una función multivaluada, es posible que f (x) sea el conjunto vacío. Si X y Y son espacios topológicos, definiremos topologías adecuadas en el conjunto de partes de Y , las llamadas topologías de la semicontinuidad superior e inferior. El propósito de este artículo es estudiar la continuidad de las funciones multivaluadas de X en Y , considerando en el conjunto de partes de Y las topologías anteriormente mencionadas
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Multivalued Usco Functions and Stegall Spaces.
    (Universidad del Valle, 2018-10-22) Narváez, Diana Ximena
    In this article we consider the study of the -differentiability and -ifferentiability for convex functions, not only in the general context of topological vector spaces (), but also in the context of Banach spaces. We study a special class of Banach spaces named Stegall spaces, denoted by , which is located between the Asplund -spaces and Asplund -spaces (-Asplund). We present a self-contained proof of the Stegall theorem, without appealing to the huge number of references required in some proofs available in the classical literature (4). This requires a thorough study of a very special type of multivalued functions between Banach spaces known as usco multi-functions.
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    El teorema de la función abierta para funciones Multivaluadas Convexas.
    (2015-09-16) Narváez, Diana Ximena; Restrepo, Guillermo
    El teorema usual de la función abierta de Banach-Schauder afi rma que toda función lineal, continua y epiyectiva de un espacio de Banach en otro, es abierta. Este teorema originalmente demostrado por Banach en 1932, lo demuestra nuevamente R. Megginson en [5] utilizando el lema de Zabreiko [10]. Seguiremos un procedimiento similar para demostrar que toda función multivaluada con valores cerrados, convexa, semicontinua superiormente y epiyectiva, es una función abierta. Ideas parecidas se utilizan para demostrar un teorema de gráfi ca cerrada para procesos convexos y cerrados en términos de semicontinuidad inferior. Abstract The usual open mapping theorem of Banach-Schauder affi rms that every linear, continuous and surjective open mapping from a Banach Space into another, is open. This theorem originally proved by Banach in 1932, is proved again by R. Megginson in [5] using Zabreiko’s lemma [10]. We will follow a similar aproach to prove that every multivalued function with closed values, convex, upper semicontinuos and surjective is an open mapping. Similar ideas are used to prove a closed graph theorem for a closed convex process in terms of lower semicontinuity.
Universidad del Valle
Universidad del Valle
  • Cali - Colombia
  • © 1994 - 2023
Dirección:
  • Ciudad Universitaria Meléndez
  • Calle 13 # 100-00
  •  
  • Sede San Fernando
  • Calle 4B N° 36-00
PBX:
  • +57 2 3212100
Línea gratuita PQRS
  • 018000 220021
  •  
Apartado Aéreo
  • 25360
Redes Sociales:
La Universidad
  • consejo-superior

    Consejo Superior
  • consejo-academico

    Consejo Académico
  • rectoria

    Rectoría
  • Nuestros Símbolos
  • acerca-de-univalle

    Acerca de Univalle
  • dependencias

    Dependencias
  • Museos

    Museos y Colecciones
  • Fotos de la Universidad
  • Mapa del Campus
  • tour-por-la-universidad

    Tour por la Universidad
  • daca

    Normatividad
  • horarios-de-atencion

    Horarios de atención
  • Portal de niños
  • Política de Tratamiento de
    la Información Personal
  • Accesibilidad digital
Estudia en Univalle
  • pregrado

    Pregrado
  • Postgrado
  • cursos-y-talleres

    Educación contínua
Sedes Regionales
  • Tuluá
  • Buga
  • univallecaicedonia

    Caicedonia
  • Cartago
  • Norte del Cauca
  • Pacífico
  • Palmira
  • Yumbo
  • zarzal

    Zarzal
  • Regionalización
Investigación
  • Acerca de la Vicerrectoría de investigaciones
  • Institutos, Centros y Grupos
  • Convocatorias
  • Universidad - Empresa (OTRI)
  • Dirección de Relaciones Internacionales
  • Programa Editorial
Internacionalización
  • Convocatorias

    Convocatorias
  • Estudia en Univalle

    Estudia en Univalle
  • Estudia

    Estudia en el exterior
  • Convenios

    Convenios Internacionales
  • Investiga

    Investiga en Univalle
  • Solicitudes

    Solicitudes / Trámites
  • About

    About Univalle
  • Contactos

    Contactos
Publicaciones
  • Libros
  • Periódico campus

2024 Universidad del Valle - Vigilada MinEducación

Sistema DSPACE 7 - Metabiblioteca | logo