A Monte-Carlo approach to the effect of noise on local stability in polynomial difference equations.

dc.contributor.authorCónall, Kellyspa
dc.contributor.authorMorgan, Kirkspa
dc.date.accessioned2011-10-13T19:59:23Z
dc.date.available2011-10-13T19:59:23Z
dc.date.issued2011-10-13
dc.description.abstractWe present an analysis of the stability behaviour of a class of one-step difference equations describing an iterated polynomial mapping. Such equations are commonly used to model population dynamics in discrete time. We use Monte-Carlo methods to investigate the effect of a state-dependent random perturbation on the local stability of such equations. In particular we focus on the probability of stability in transitionary initial-value regions; regions where a switch in the qualitative behaviour of the deterministic equation is observed.spa
dc.identifier.urihttps://hdl.handle.net/10893/1800
dc.language.isoenspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subjectLocal Stabilityspa
dc.subjectDiscrete Stochastic Processspa
dc.subjectDifference Equationspa
dc.subjectMonte-Carlo Simulationspa
dc.titleA Monte-Carlo approach to the effect of noise on local stability in polynomial difference equations.spa
dc.typeArtículo de revistaspa
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
V.16-No2-p.1-8.pdf
Tamaño:
562.46 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.81 KB
Formato:
Plain Text
Descripción: